
Implementing MiniML – CS51 Final
Project Writeup

Lan Zhang

May 2019

Overview

In this project, I implemented MiniML, a small subset of an OCaml-like
language, consisting of only a fraction of the constructs and types associated
with OCaml, and does not support type inference. I implemented three differ-
ent MiniML interpreters that evaluate expressions using different semantics;
the first MiniML interpreter uses the substitution model, the second uses
the dynamic scoped environment model, and the third, an added extension,
implements the lexical scoped environment model.

Extensions

I. Lexical Scoped Environment Model

As part of my extension of the MiniML language, I implemented an in-
terpreter that utilizes lexically scoped environment semantics. The main
difference between lexically scoped environment semantics and dynamically
scoped environment semantics is that the values of the variables are deter-
mined by the lexical structure of the program; unlike in dynamic scoping
where functions are evaluated using the environment existent at the time
of application, in lexical scoping functions are evaluated in the environment
created at the time of function definition.

1

CS51 Final Project Writeup

The two main differences between dynamic environment semantics and
lexical environment semantics lies in the evaluation of a function and the
evaluation of a function application. So, in accordance with the final project
instructions, I first made a copy of my eval_d function and modified the
code so that the evaluation of a function returned a closure containing the
function itself and the environment existent at the time of its definition.

| Fun (_v, _e) -> Closure (exp, env)

I also modified the code so that the evaluation of a function application
evaluated the body of the function in the environment from the corresponding
closure.

| App (e1, e2) -> match eval_l e1 env with

| Closure (Fun (v, e), env1) -> let v_e2 = eval_l e2 env in

let new_env =

extend env1 v (ref v_e2) in

eval_l e new_env

| _ -> raise (EvalError "Invalid Application")

Upon making these two modifications, I recognized that because the func-
tion and application match cases for an expression were the only differences
between the eval_d and eval_l functions, I created the function eval_both

that employs either dynamic or lexical semantics evaluation depending on the
boolean value of the input dyn_eval. If the value of this boolean flag is true,
then evaluation associated with dynamic environment semantics is employed,
and if the value of this boolean flag is false, then evaluation associated with
lexical environment semantics is employed.

The value of the boolean flag dyn_eval is critical in the function and
application match cases for the inputted expression argument of eval_both.
For the function match case, if dyn_eval is set to true, the function would
evaluate to the expression itself as per dynamic environment semantics rules,
and if dyn_eval is set to false, the function would evaluate to a closure of the
expression and the current environment at the time of function definition, as
per lexical environment semantics rules.

With the application match case, I abstracted the code associated with
this match case from eval_d and eval_l into two separate helper functions,
app_d and app_l. If the boolean flag dyn_eval is set to true, app_d is called

2

CS51 Final Project Writeup

and dynamic environment semantics evaluation rules are then employed, the
function evaluated in the environment existent at the time of application.
On the other hand, if dyn_eval is set to false, app_l is called and lexical
environment semantics evaluation rules are employed, the function evaluated
in the environment existent in the corresponding closure that was created at
the time of function definition.

To test my lexical scoped environment model extension, I used two ex-
pressions that would evaluate to different values under dynamic environment
semantics vs. lexical environment semantics rules:

The first expression was provided in the project description:

let x = 1 in

let f = fun y -> x + y in

let x = 2 in

f 3 ;;

Under dynamic environment semantics, the above expression evaluates to
5, as x = 2 at the time of function application. On the other hand, under
lexical environment semantics, the expression evalues to 4, as x = 1 at the
time of function definition.

Similarly for the other test case,

let x = 5 in

let f = fun y -> 2 * x * y in

let x = 3 in

f 4 ;;

the expression evaluates to 24 under dynamic environment semantics, and
40 under lexical environment semantics.

II. Additional Operators

As another portion of my extension, I added both the division and greater
than operators for the existing atomic types of integers and bools. To do so,
I first modified relevant functions in expr.ml and evaluation.ml.

Because the division and greater than operators are both binary opera-
tors, I first expanded the binop type to include Divide and GreaterThan,
making corresponding changes to the expr.mli file as well to modify the sig-
nature of the Expr module. I then modified the expr_to_abstract_string

3

CS51 Final Project Writeup

and expr_to_concrete_string functions to return appropriate string rep-
resentations of these additional operators.

Turning to the evaluation.ml file, I modified the helper function binopeval,
providing evaluation rules for the division operator and the greater than op-
erator applied to two integers, raising an Eval_Error exception if applied
to arguments of other types. For the Divide operator, because division by
zero is undefined, I also raised an exception if the second argument (arg2)
in Binop (Divide, arg1, arg2) is the integer zero.

I then extended the provided MiniML parser in the file the miniml_parse.mly
to parse symbols associated with these new operators. I expanded the to-
ken that previously had the constructor TIMES to include the constructor
corresponding to division as well (DIVIDE), and similarly expanded the to-
ken that had the constructors LESSTHAN EQUALS to contain the constructor
corresponding to the GREATERTHAN operator:

...

%token TIMES DIVIDE

%token LESSTHAN EQUALS GREATERTHAN

...

I also expanded the grammer in miniml_parse.mly to include function-
ality for the division and greater than operators:

%%

...

expnoapp: ...

| exp DIVIDE exp { Binop(Divide, $1, $3) }

| exp GREATERTHAN exp { Binop(GreaterThan, $1, $3) }

...

;

%%

Next, I modified the miniml_lex.mll file to add the division symbol /
and greater than symbol > to the symbol hashtable and associated these sym-
bols with the named constructors I had just defined in miniml_parse.mly:

let sym_table =

create_hashtable 8 [

...

(">", GREATERTHAN);

4

CS51 Final Project Writeup

("/", DIVIDE);

]

I then made one final edit to this lexical analyzer for MiniML, adding the
symbols > and / to the defined symbol character set.

let sym = ['(' ')'] | (['+' '-' '*' '.' '=' '~' ';' '<' '>' '/']+)

Upon making these changes, I ran ./miniml.byte and was able to eval-
uate expressions containing the division and greater than operators in the
MiniML REPL:

#./miniml.byte

Entering ./miniml.byte...

<== 3 > 4 ;;

==> false

<== 3 / 4 ;;

==> 0

<== 6 / 2 ;;

==> 3

III. Floats

Another extension I implemented consisted of adding floats to the Min-
iML language. To do so, I first modified expr.ml, expanding the unop type
definition to include a new unary operator, negation of floats, naming it
Negate_f. I also expanded the binop type definition to include the cor-
responding binary operators on floats that my MiniML implementation at
the time supported for integers, naming them Plus_f for addition of floats,
Minus_f for subtraction of floats, Times_f for multiplication of floats, and
Divide_f for division of floats:

type unop =

...

| Negate_f

;;

type binop =

...

| Plus_f

| Minus_f

5

CS51 Final Project Writeup

| Times_f

| Divide_f

;;

Next, I expanded the type definition of expr to include Float of float.
Upon doing so, I had to update the match cases of many other functions that
pattern matched a variable of type expr.

In expr.ml, the functions that I altered to support the new float type were
free_vars, subst, exp_to_concrete_string, and exp_to_abstract_string.
For free_vars, because a float is a constant and therefore has no free vari-
ables, I returned an empty set for the float match case. Similarly for subst,
because a float is not a variable, I simply returned the original float in the
float match case. For exp_to_concrete_string, I simply called the func-
tion float_of_string from the Pervasives module and applied it to the
actual float (f in Float(f), extracted through pattern-matching). Finally,
for exp_to_abstract_string, I returned essentially the same thing as I did
for the float match case in exp_to_concrete_string, but wrapped the result
with the string "Float()".

In evaluation.ml, I first altered the helper functions unopeval and
binopeval to support the new float operations I had defined earlier in
expr.ml. I defined the evaluation of float operations to be analagous to the
existing int operations I had already implemented, instead using OCaml float
operators (~-., +., -., *., /.). Then, I altered eval_s and eval_both

to support the Float (_) pattern-match case for expressions. In all evalu-
ation rules for substitution, lexical environment, and dynamic environment
semantics, a float simply evaluates to itself, so I implemented these minor
changes in eval_s and eval_both.

Finally, I extended the provided MiniML parser to parse floats. I first al-
tered the miniml_parse.mly file, extending the existing token declarations to
include support for float operations. I added the constructors NEG_F, PLUS_F,
MINUS_F, and TIMES_F to the token declarations containing their integer op-
erator counterparts. I also added a token declaration for floats, creating a
token with a constructor that has the attributes of type float:

...

%token NEG NEG_F

%token PLUS PLUS_F MINUS MINUS_F

6

CS51 Final Project Writeup

%token TIMES TIMES_F DIVIDE DIVIDE_F

...

%token <float> FLOAT

I also expanded the grammer in miniml_parse.mly to include function-
ality for these five new float-specific operators:

%%

...

expnoapp:

...

| exp PLUS_F exp { Binop(Plus_f, $1, $3)

| exp MINUS_F exp { Binop(Minus_f, $1, $3) }

| exp TIMES_F exp { Binop(Times_f, $1, $3) }

| exp DIVIDE_F exp { Binop(Divide_f, $1, $3) }

| NEG_F exp { Unop(Negate_f, $2) }

;

%%

Next, I modified the miniml_lex.mll file to add the symbols associated
with these five new float-specific operators to the existing symbol hashtable,
and associated these symbols with the named constructors I had just defined
in miniml_parse.mly.

let sym_table =

create_hashtable 8 [

...

("~-.", NEG_F);

("+.", PLUS_F);

("-.", MINUS_F);

("*.", TIMES_F);

("/.", DIVIDE_F);

]

}

I then referenced the everyday OCaml resource cited at the end of the
writeup to make the final changes to the lexical analyzer for MiniML to parse
floats and the corresponding operations of this added type.

I first defined the float character set:

let digit = ['0'-'9']

let frac = "." digit*

7

CS51 Final Project Writeup

let float = digit* frac?

...

I then modified the token rule to support floats:

rule token = parse

...

| float as fnum

{ let fl = float_of_string fnum in

FLOAT fl

}

...

Upon making these changes, I ran ./miniml.byte and was able to eval-
uate expressions containing floats in the MiniML REPL:

#./miniml.byte

Entering ./miniml.byte...

<== 3. > 4. ;;

==> false

<== 3. / 4. ;;

==> 0.75

<== 3. +. 4. ;;

==> 7. ;;

<== let rec f = fun x -> if x = 0. then 1. else x *. f (x -. 1.) in f 4. ;;

==> 24.

Resources

Minsky, Yaron, et al. “Chapter 16. Parsing with OCamllex and Men-
hir.” Chapter 16. Parsing with OCamllex and Menhir / Real World OCaml,
v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html.

8

