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Abstract

This project aims to extend the SEIR model for COVID-19 through a stochastic individual agent
model that incorporates undetected (U) and fatal (F) populations to better capture the nuances of
the virus’ effect on different communities. This model also stratifies by age to account for the role age
plays in population movement, immunity, symptom development, and prognosis, leading to differing
exposure, infection, and mortality rates across age groups. Our results suggest that elderly populations
are significantly more susceptible to developing symptoms after exposure to COVID-19 compared to
each younger age group and are less likely to recover after infection (fatality instead of recovery).

1 Introduction

The spread of infectious disease is a complex process influenced by societal, economic, environmental,
biological, and behavioural factors. Given the detrimental impact of these illnesses, it comes at no surprise
that mathematical models are used to understand the dynamics of their evolution in a population over a
given time period to better prevent, minimize, and study its impact. However, it is important to note that
the use of complex models will involve a large number of estimated parameters, affecting model accuracy
and conclusiveness due to the lack of comprehensive data and difficulty of determining true population
parameters to supply to a stochastic model.

Fortunately, compartmentalization is an essential technique that can be used to divide a population into
simplified and workable compartments, where every individual in the same compartment is assumed to
share a certain characteristic. These compartments are then investigated using deterministic and stochas-
tic ordinary differential equations. One mathematical model that uses this technique is the susceptible-
exposed-infected-removed (SEIR) model. Here a population is divided into four basic homogeneous com-
partments: (1) An individual is susceptible (S), (2) An individual is exposed to the disease but not yet
infectious (E), (3) An individual is infectious (I), or an individual has been removed through recovery or
death (R). This model has been used for a variety of human infections and many variations have been
implemented to improve its representation of the evolution of the illness in question.

The goal of this report is two-fold. First, we plan to extend the SEIR stochastic individual agent model
to include an undetected population (U), which are the individuals within the population who are asymp-
tomatic but can spread the virus and can only recover, and a fatality population (F), which are individuals
that have died. This is to better capture the complexity of COVID-19, specifically the ability for asymp-
tomatic carriers infect and recover at different rates and intensities compared to symptomatic carriers, who
sometimes do not recover. Second, we plan to stratify our stochastic model by age, as previous studies
have identified age to be a critical distinguishing factor in varying exposure, immunity, and infectious-
ness parameter values due to biological and behavioral conditions corresponding to each age group1. Age
stratification will help to construct more insightful models to study the impact COVID-19 has had and

1Anca Rǎdulescu, et. al, 2020, “Management strategies in a SEIR-type model of COVID 19 community spread”,
https://www.nature.com/articles/s41598-020-77628-4.pdf
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will have on the community types that comprise the global population. Understanding these differences
can improve and guide our tailored responses to future pandemics in terms of policy-making and vaccine
distribution.

This paper is organized as follows: in Section 2, we will propose a SEIURF compartmental model with
stratification of parameters according to age. Dynamic analysis of the current model will be examined in
Section 3, our findings from this model along with sensitivity analysis of our parameters will be discussed
in Section 4, with a conclusion following in Section 5.

2 Description of Model

2.1 Extended SEIR (SEIURF) Individual Agent Model

We chose to pursue a stochastic individual agent model (IAM) to observe the natural evolution of a
population impacted by COVID-19 under certain parameters over time. Furthermore, we looked to identify
any potential population patterns that may arise from the randomness of individual interactions that would
have been excluded in a deterministic model. The stochastic individual agent model is also more flexible
in that it is easier to add and manipulate the modeling environment to test our hypotheses as well as scale
the complexity of each of the individual agents’ behavioural traits.

In the model, the entire population begins in the susceptible (S) population. Initially, a random agent in
the population is infected. Then for each timestep until the exposed (E), infected/symptomatic (I), and
undetected/asymptomatic (U) populations are 0, we iterate through each individual in the population. If
a given individual is a member of the exposed, infected, or undetected groups, we randomly generate a
number of contacts for the individual according to the Poisson distribution with different rates λ depending
on whether the given individual is symptomatic or asymptomatic. Each of the randomly generated contacts
enters the exposed population with probability p e. We also keep track of and update the amount of time
each individual who is exposed, infected, or undetected has left in that state at each timestep. With
probability p i, an exposed individual becomes infected otherwise undetected, with probability p f, an
infected person dies or otherwise recovers, and all undetected individuals recover. A flowchart outlining the
movement through the different states of the model can be found in Figures 6 and 7 of the Appendix.

In the case of our SEIURF model, the stochastic IAM allowed us to partition the rate of contacts per
day into rates λ1 and λ2 for exposed as well as asymptomatic people (nc1 lam), and symptomatic infected
people (nc2 lam), respectively. We assume λ1 > λ2, where λ1 = 1.665 and λ2 = 1, based on our hypothesis
that depending on an individual’s personal knowledge whether they had been infected with COVID-19,
they would self-impose restrictions on contact with other people, the community would limit their contact
rates, and the degree of illness would physically prevent an individual from contacting people. The Poisson
distribution was selected to model the number of contacts of an individual agent due to its discrete output
and versatility in capturing independent, randomly occurring events.

We moved the exposed population into the symptomatic (I) and asymptomatic (U) compartments after
a set incubation period (incubate time) of 2 days. Individuals would become exposed after a contagious
contact with an exposed, asymptomatic, or symptomatic individual with probability of p e = 0.201.
Exposed individuals would either become symptomatic/infected with a probability of p i = 0.484, and
asymptomatic/undetected with a probability of p u = 1 - p i = 0.516. We chose a higher p u value than
a p i because we assumed, given previous studies2, that more carriers of COVID-19 experience mild to

2Balabdaoui, Mohr, 2020, “Age-stratifed discrete compartment model of the COVID-19 epidemic with application to
Switzerland”, https://www.nature.com/articles/s41598-020-77420-4.pdf
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undetectable symptoms as opposed to severe ones and that the data on undetected carriers are incomplete
due to the difficulty in identifying the asymptomatic population. Then, symptomatic individuals would die
with a probability of p f = 2.66%, otherwise they recover after a given countdown period. Here, we assume
that only symptomatic individuals can experience severe enough symptoms to become fatal. Finally, we
set the number of days an infected or undetected person is contagious for to be uniformally distributed
between a minimum value of min infect = 5 days and maximum value of max infect = 15 days. We
chose these parameter values based on the data published by the CDC3. Values for the parameters in our
baseline model were found by taking the weighted average of the corresponding parameters for each age
group in Table 1, and they were then applied onto the entire population. The corresponding deterministic
version of the non-age-stratified model is available in section 7.1 of the Appendix.

2.2 Stratification by Age Group

We then chose to stratify this model by age due to the overwhelming evidence that people of different ages
respond to COVID-19 in distinct ways physiologically (e.g. how severe symptoms are) and socially (e.g.
social-distancing policies). We segment the population according to the following age brackets: Children
(C, 0–18 years of age), Young adults (Y, 19–34 years of age), Adults (A, 35–64 years) and Elderly (E, 65+
years), assigning each individual in our population vector an age based on the United States population
distribution by age. Children (C) compose 25% of the population, young adults (Y) compose 22% of the
population, adults (A) compose 39% of the population, and the elderly (E) compose the remaining 14% of
the population4. While there is some overlap and similarities in responses across age groups, in general,
each age group has unique epidemiological profiles, as the severity of symptoms and mortality rates vary
based on age. Additionally, members of varying age groups interact with different numbers of individuals
per day5. Thus, we assign separate values for the parameters p e (probability of being exposed), p i

(probability of being symptomatic), p f (mortality rate), and nc1 lam (expected number of contacts when
exposed/asymptomatic) by age group as follows:

Table 1: Parameters by Age Group

Age Group p e p i p f nc1 lam

C 0.1 (30%), 0.3 (70%) 0.2 Unif(0, 0.002) 2
Y 0.1 (40%), 0.3 (60%) 0.4 Unif(0.002, 0.003) 2
A 0.1 (60%), 0.3 (40%) 0.6 Unif(0.003, 0.036) 1.5
E 0.1 (70%), 0.3 (30%) 0.8 Unif(0.06, 0.2) 1

We chose the above age-stratified parameters based largely on the parameter values in Rǎdulescu et al.
We chose two different values for p e, 0.1 for probability of exposure when socially distancing and 0.3 for
probability of exposure otherwise, varying the distribution of p e based on age group due to different social
behaviors and levels of maturity across the brackets. Different p i values were chosen based on varying
rates of asymptomatic incidence across age groups. Similarly, different p f values were chosen based on
varying mortality rates from COVID-19 between different age groups. Finally, different nc1 lam values
were chosen since different age groups come into contact with varying expected number of individuals per
time unit (1 day) due to diverse educational, social/familial, and occupational responsibilities. Note that
nc2 lam is set to 1 across all age groups.

3Centers for Disease Control and Prevention, Feb. 23, 2021, ”Interim Guidance on Duration of Isolation and Precautions
for Adults with COVID-19”

4https://www.kff.org/other/state-indicator/distribution-by-age
5Anca Rǎdulescu, et. al, 2020, ”Management strategies in a SEIR-type model of COVID 19 community spread”,

https://www.nature.com/articles/s41598-020-77628-4.pdf
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3 Results and Analysis

3.1 Age-Stratified Results

Figure 1: System Dynamics (averaged over 100 realizations)

(a) Using Age Specific Parameters (b) Using Uniform Parameters

We can see from the above two plots that when we assign each individual to an age group and use age-
specific parameters when moving the agent through our SEIURF model, we observe very similar system
dynamics to our baseline SEIURF model where we use uniform parameters across all individuals. However,
upon plotting system dynamics by age group, shown in Figure 2 below, we are able to better isolate the
effect of age with respect to the impact of COVID-19 epidemic on a population.

Figure 2: System Dynamics by Age Group (averaged over 100 realizations)

From Figure 2, we observe that across age categories, the two curves that are most distinct amongst
the groups are the U (undetected/asymptomatic) and I (infected/symptomatic) curves. The children age
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group (0-18 years) experiences a significantly larger number of asymptomatic cases over symptomatic ones,
as evidenced by the steeper U curve in red and the flatter I curve in green. The young adult population
(19-34 years) behaves similarly with a higher number of asymptomatic cases rather than symptomatic
ones, however the difference in cases between the two compartments is less than that of the children age
group. On the other hand, the adult population (35-64 years) experiences a larger number of symptomatic
rather than asymptomatic cases, and this difference is even more stark in the elderly population (65+)
whose infected/symptomatic curve I in green is significantly steeper than the undetected/asymptomatic
curve U in red. We also observe that the curve corresponding to fatalities F in brown plateaus at a number
corresponding to a larger fraction of the age group at the end of the epidemic, aligning with the higher
mortality rate of COVID-19 in elderly patients.

Figure 3: Evolution & Composition of S,E,I,U,R,F Curves by Age Group (averaged over 100 realizations)

Figure 3 further highlights the composition of each curve in our SEIURF model by age group. We ob-
serve that the infected curve I is largely composed of the adult and elderly age groups, and that the
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undetected/asymptomatic curve U is largely composed of the children and young adult age groups. The
deceased curve F is nearly entirely composed of the adult and elderly age groups, with a few cases from
the young adult group.

3.2 Sensitivity Analysis Using Uniform Parameters

Figure 4: Effect of Social Distancing in Varying λ1

Table 2 highlights the changes in the infection I and fatality F curves, averaged over 100 realizations, given
changes in p e and p i values, specifically the average time in which a given population peaks and the cor-
responding population value over 100 realizations, with all other parameters held constant.6 max time(I)

and max time(F) correspond to the time at which the infected and fatality populations, respectively,
reached their peak in our model, and max pop(I) and max pop(F) corresponds to the population of the
infected and fatality populations, respectively, at that time. Note that we especially focus on symptomatic
individuals (I population) since much of the data, particularly early data, on COVID-19 infection rates
captured only this demographic.7

As we observe in Table 2, when p e (the probability of becoming exposed after a contagious contact)
increases from 0.1 to 0.5, the infected and fatality populations peak at increasingly greater values and
peak faster. In other words, the populations experience a higher infection rate and higher fatality rate.
When p i (the probability an exposed individual becomes symptomatic) increases from 0.1 to 0.5, the I
and F populations peak at greater values, but I continues to peak at around 45 days each time. In Figure
4, averaging across 100 realizations, we observe a similar trend when nc1 lam increases from 1.665, as
set in our baseline model, to 7. With a higher average number of contacts among individual agents, the
exposed population increases quickly earlier on, hitting its peak at around day 13, as opposed to around
day 40. As the result, we observe a higher infection rate.

4 Discussion

The sensitivity analysis of parameters nc1 lam (i.e., λ1), p e, p i, and p f is useful in estimating the effect
of specific measures on slowing the spread of disease. For example, understanding the relationship of each
parameter with the evolution of the S, E, I, U, R, and F populations can enable policymakers to develop

6Animations are available here
7We expect the evolution of the asymptomatic population (U) to be similar to that of the symptomatic population (I),

assuming the ratio of asymptomatic to symptomatic individuals stays relatively constant. Within our model, this ratio would
be p u

p i
.
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Figure 5: Sensitivity Analysis Varying pe, pi, and pf

Table 2: Sensitivity Analysis

p e = 0.1 p e = 0.2 p e = 0.3 p e = 0.4 p e = 0.5

max pop(I) =
178.18;
max time(I) =
103;
max pop(F) =
32.02;
max time(F) =
221

max pop(I) =
1479.11;
max time(I) =
47;
max pop(F) =
96.45;
max time(F) =
95

max pop(I) =
2455.58;
max time(I) =
33;
max pop(F) =
114.18;
max time(F) =
66

max pop(I) =
3294.79;
max time(I) =
27;
max pop(F) =
124.55;
max time(F) =
54

max pop(I) =
3511.85;
max time(I) =
24;
max pop(F) =
123.52;
max time(F) =
48

p i = 0.1 p i = 0.2 p i = 0.3 p i = 0.4 p i = 0.5

max pop(I) =
353.89;
max time(I) =
43;
max pop(F) =
20.78;
max time(F) =
84

max pop(I) =
654.95;
max time(I) =
45;
max pop(F) =
40.18;
max time(F) =
90

max pop(I) =
964.39 ;
max time(I) =
44;
max pop(F) =
58.31;
max time(F) =
100

max pop(I) =
1338.14;
max time(I) =
45;
max pop(F) =
81.89;
max time(F) =
102

max pop(I) =
1668.24;
max time(I) =
45;
max pop(F) =
106.87;
max time(F) =
106

a more targeted plan (e.g. social distancing policies, mask mandates) in combating the epidemic. For
instance, as seen in Figure 4, a higher nc1 lam results in a noticeably higher infection rate, suggesting
that social distancing policies that encourage less potentially contagious contacts between individuals may
be effective in containing an epidemic. Similarly, a higher p e corresponds to a higher infection rate. By
decreasing p e values while keeping other parameters constant, we observe lower infection and fatality
numbers in our model, which could inform policy makers of the efficacy of stringent mask mandate adher-
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ence. Decreasing p i values while keeping other parameters constant also appears to lower max infection
numbers and speeds, which helps us more easily see how diseases of different degrees of infectiousness
spread throughout a population. Finally, testing p f sensitivity while keeping other parameters constant is
important for understanding the impact of deadly diseases on population dynamics and composition, such
as whether infection rates slow or whether surviving strains become less dangerous if infected people do not
recover and are removed from the population. Additionally, p f may vary depending on the efficacy of the
health care system in a nation, region, or town, which has a variety of policy implications. A shortcoming
of the sensitivity analysis is that it does not account for the possibility of reinfection after recovery, which
may in turn increase p e and p i.

Analysis of our age-stratified stochastic individual agent SEIURF model allows us to understand how the
epidemic affects each age group individually rather than the aggregated population as a whole, upon taking
into account varying physiological responses to COVID-19 and social behaviors. These results can help
inform current policy decisions necessary to control the spread of the COVID-19 epidemic; for instance,
the larger number of undetected/asymptomatic cases for children and young adults suggests that policies
like creating shopping hours for senior citizens at household essentials stores are necessary to limit the
number of infections and fatalities in the elderly population. Additionally, these results can help inform
vaccination strategies. Our age-stratified SEIURF individual agent model can be used to project how
system dynamics will be impacted if the vaccine is distributed to certain age groups first, as we can simply
change parameters associated with the vaccinated group to reflect their newly immune status.

Strengths & Limitations of Model:

Overall, by using an IAM, we are able to capture the characteristics of different groups in a population,
providing a sense of realism in capturing the evolution of each population, which a deterministic model
would lack. Furthermore, in the case of a deterministic model, one must assume that the population is
large enough to be approximated as a real number, as opposed to an integer. However, in the case of our
model, we are able to also capture what a small town may be able expect. Moreover, in running many
realizations of our IAM, we were able to gain a better sense of the different outcomes that could play out,
as the result of randomness. Our model was also able to evaluate the sensitivity of each parameter on the
evolution of populations, and with this information, provide suggestions regarding what policies should be
targeting (e.g. reduction of contacts between individuals with social distancing policies and reduction of
the probability of becoming exposed with mask mandates). Finally, the IAM model may be generalized to
capture the spread of other infectious diseases. That said, the primary limitation of the stochastic SEIURF
model is that it is computationally expensive, with a time complexity of O(n2).

5 Conclusion

The spread of infectious disease is a complex process influenced by many factors within today’s society,
namely those that are economic, environmental, biological, and behavioural in nature. Through compart-
mentalization, as seen in our SEIURF model, these factors can be represented to observe the evolution of
COVID-19. This model suggests that children that are aged 0-18 years and young adults that are aged 19-
34 years experience higher numbers of asymptomatic cases than symptomatic ones, while the adults aged
35-64 years and elderly aged 65+ experience the vice versa. This model further suggests that the infected
and deceased are largely composed of the adult and elderly populations. These results can ultimately help
inform current policy decisions necessary to control the spread of the COVID-19 epidemic and help inform
vaccination strategies across varying age groups to mitigate the spread of this illness.

When reflecting on how to expand this current model, there are several paths for future work that can
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be taken. First and foremost, it would be of great interest to capture the different behaviors of the
agents involved, more specifically their location and mobility. This can also be expanded to account
for the movement of the agents from place to place, such as from home to work. This would allow for
more accurate mapping of how the disease spreads within a population. Additionally, the deterministic
model can be expanded. Currently, the run time for this model, explained in Appendix 7.2, poses a
significant limitation and needs to be faster as well as less computationally expensive. By adhering to
these characteristics, this would allow for further translation and application to larger populations with
more stratified age groups.

6 Attribution of Effort

• Lan contributed to this project by conducting background research to help formulate the SEIURF
model and the stratification by age group extension. She implemented code associated with age-group
stratification to the baseline SEIURF model implemented by Jessica (age stratified model.ipynb)
and generated relevant visualizations. She also helped write the paper and create the slide deck,
largely focusing on sections related to age-group stratification, but contributed to the writeup of
other portions of this project as well.

• Hannah contributed by conducting background research to find reasonable parameter values for the
stochastic individual agent model. She attended office hours to discuss group questions for the
project. She helped create the sensitivity analysis tables and graphs with the baseline SEIURF
model implemented by Jessica (IAM.ipynb) and wrote the abstract, and parts of the introduction,
description of model (section 2.1), and discussion sections. She also helped with creating the pitch
deck.

• Nina contributed by conducting background research and finding publications on how to manipulate
the standard SEIR model to reflect the complexity of disease evolution over a population. She also
performed background research on the sensitivity analysis, exploring several options that would best
reflect the sturdiness of the proposed model. She contributed to writing parts of the introduction as
well as the conclusion and played a role in creating and presenting the slide deck associated with this
paper, expanding on the background and motivation and the future works slides.

• Jessica contributed to this project by extending the SIR individual agent model code, as provided
by David Wei. In particular, she developed the baseline SEIURF model (IAM.ipynb) of this paper,
running the model on uniform parameters applied to the entire population. Within the paper, she
contributed parts of to section 2.1 (Model) and section 4 (Discussion). Additionally, she developed
the Appendix (flowchart and deterministic model). Finally, she helped with creating the slide deck,
particularly the sections discussing the baseline SEIURF model’s mechanics and limitations of the
model.
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7 APPENDIX

7.1 Flowcharts for the SEIURF Model

Figure 6: Different states of the SEIURF individual agent model in simulating the progress of epidemics
in a human population

Figure 7: Flow diagram of states in the SEIURF individual agent model
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7.2 Deterministic Model

The deterministic model, like our individual agent model, is an extension of the SEIR model. The pop-
ulation size N is divided into six classes: the susceptible S(t), the exposed (in the latent period) E(t),
the symptomatic/infected I(t), the asymptomatic/undetected U(t), the recovered R(t), and the deceased
F (t). The corresponding deterministic formulation of the individual agent model is as follows:

dS

dt
= −β1

SI

N
− β2

S(U + E)

N
dE

dt
= β1

SI

N
+ β2

S(U + E)

N
− Eδ1 − Eδ2

dI

dt
= Eδ1 − Iγ1 − If

dU

dt
= Eδ2 − Uγ2

dR

dt
= Iγ1 + Uγ2

dF

dt
= If

(1)

The parameters β1 and β2 represent the the average number of contacts per person per time unit (1 day),
multiplied by the probability that the virus is transmitted via a contact between a susceptible individual
and a contagious individual. β1 corresponds to the rate given the symptomatic population I, whereas β2
corresponds to the rate given the population in the incubation period E and the asymptomatic, undetected
population U . This model operates under the assumption that β2 < β1, as symptomatic individuals are
more likely to change their behavior and reduce the number of contacts they make with other individuals
in the population.

The parameters δ1 and δ2 refer to the rate at which exposed individuals, who are undergoing the incubation
period, become symptomatic (I) or asymptomatic (U). The parameters γ1 and γ2 represent the rate of
recovery for symptomatic, infected individuals (I) and asymptomatic, undetected individuals (U). Finally,
the parameter f corresponds to the fatality rate. Here, our model assumes that only symptomatic ave a
chance of dying.
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