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Abstract

This project aims to formulate integer-programming models that determine the optimal allocation
of bikes across stations in a bike-sharing system during rush hour intervals by minimizing total in-
stances of unmet customer demand for available bikes and empty drop-off slots. The results of these
integer programs when applied to Bluebikes ridership data inform operators of each station’s optimal
bike-fill percentage at the beginning of morning and evening rush hours and are heavily correlated
with the geographic distribution of Boston’s residential and business districts. Additionally, associated
sensitivity analysis on binding station capacity parameters can be used to determine optimal system
expansion strategies.

1 Introduction

Bike-sharing systems have contributed to a significant transportation paradigm shift in urban areas during
the last decade, as they provide cost-effective and sustainable means of traveling between two locations for
commuting and tourism purposes. A bike-sharing system is composed of stations scattered across a city
where users can take an available bike from any station and drop off the bike to a vacant dock at another
station near their desired destination. Bluebikes, Boston’s bike-sharing system, has grown from 65 stations
and just over 14,000 trips in 2011 to over 365 stations and more than 2 million trips in 2020.1

However, with the rise in usage of bike-sharing systems, system imbalance becomes an increasingly promi-
nent issue. Especially during rush hours when large numbers of individuals are traveling to and from
work, bikes accumulate at certain stations in the city which then leaves other stations empty. Customer
dissatisfaction often arises from two cases caused by asymmetric demand for bikes across the city.2 In the
first case, users who want to rent a bike may be met with fully empty stations and are then required to find
other means of transportation. In the second case, customers may find that the station at their desired
destination has no empty slots and are then required to end their trip at a different location.

Like all bike-sharing systems, Bluebikes uses 4-5 vans around the clock to rebalance bikes across stations
in order to better meet customer demand.3 Because trucking operations are expensive, about $1 per bike
moved, numerous studies have been conducted that cluster stations based on whether they lose, gain, or
self-balance bikes over the course of a given day and predict expected demand for bikes at each station using
stochastic models such as Markov Chains.4,5 Results from these studies have helped operators determine
where to build new bikeshare stations and how to best allocate bikes in order to meet anticipated user
demand.

The goal of this project is to use integer programs (IPs) to determine the optimal number of bikes to place
at each bikeshare station at the start of morning and evening rush hours to meet the sharp increases in

1https://www.bluebikes.com/system-data
2https://d21xlh2maitm24.cloudfront.net/wdc/cabi-2014surveyreport.pdf?mtime=20161206135936
3https://www.bluebikes.com/about/media-kit
4https://ecommons.cornell.edu/handle/1813/40922
5https://downloads.hindawi.com/journals/mpe/2018/8028714.pdf
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system demand. I then apply the formulated models to Bluebikes data to determine the optimal state
of rush hour bike allocation. Finally, I conduct sensitivity analysis on the model to explore how varying
parameters such as the net flow of bikes at a station (which is dependent on both weather and season),
the total number of bikes in the system, and the number of docks available at a given station impact the
results of the optimization problem.

This paper is organized as follows. In Section 2, I will propose an integer programming model that solves
for optimal rush hour bike allocation based on the net flow of bikes over the course of the rush hour. I will
also propose an extension to the initial IP that dynamically updates the number of bikes at a given station
every n minutes and minimizes the sum of mismatched demand and supply for both bikes and empty
docks across all n-minute length intervals in a given rush hour. Finally, in Section 2, I will describe the
data collection and cleaning process for Bluebikes data in order to calculate IP parameters before solving.
The results of the Bluebikes case study will be presented and examined in Section 3, and I will conduct a
sensitivity analysis on my chosen parameters and discuss model shortcomings in Section 4. A conclusion
will follow in Section 5.

2 Description of Models & Data

2.1 Integer Program Formulation for Optimal Rush-Hour Bike Allocation

2.1.1 Integer Program Formulation Based on Total Net Flow of Bikes

To determine the optimal allocation of bikes across stations at the start of the morning and evening rush
hour periods such that the sum of users who want to rent a bike but are met with empty stations and those
who seek to return a bike but are met with full stations is minimized, I formulated an integer program, as
the objective function and constraints are linear and all decision variables are integral. In order to estimate
the demand of bikes and empty slots at a given station, I calculate the net flow of bikes corresponding to
each station from available bikeshare data over the course of both morning and evening rush hours.

Let Xs, the decision variables, equal the number of bikes placed at station s at the beginning of rush hour.
The parameters are defined as follows: let B be the total number of bikes in the city-wide system, let Cs be
the capacity (total number of docks) at station s, and let flows be the net flow of bikes at station s over the
course of the rush hour. More explicitly, letting ins be the total number of bikes coming into station s over
the course of a predefined rush-hour period and outs be the total number of bikes leaving station s over
this same rush hour interval, I define flows = ins − outs. Thus, if flows < 0, more bikes are rented from
station s than dropped off, and vice versa for cases where flows > 0. Additionally, let S = {1, 2, ..., N} be
the set of stations in the bike-sharing system, with N being the total number of stations.

Thus, Xs + flows is the total number of bikes available and Cs− (Xs + flows) is the total number of slots
available at station s at the end of the rush hour period. Ideally, we want Xs + flows ≥ 0 such that there
are enough bikes placed at station s at the beginning of the rush hour to meet the overall demand for
bikes, taking into account the total inflow of bikes over the same time period. Additionally, we would also
like Cs − (Xs + flows) ≥ 0 such that there are enough slots available for customers who want to drop off
bikes at station s, accounting for slots that are emptied due to bikes being rented during the same interval.
It follows that the formulated integer program should assign a penalty to all instances where Xs + flow
is less than 0 or greater than Cs, as the former would result in Xs + flow < 0 and the latter would result
in Cs − (Xs + flow) < 0, and minimize the sum of these penalty terms across all stations. Let us call the
first integer program Model A for ease of future reference. Model A is formulated as follows, with auxiliary
variables Us and Os capturing the total number of instances where station s has too few bikes or too few
slots to meet customer demand, respectively.
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2.1 Integer Program Formulation for Optimal Rush-Hour Bike Allocation 3

minimize
∑
s∈S

Os + Us

s.t.
∑
s∈S

Xs ≤ B

Xs ≤ Cs, ∀s ∈ S

Us ≥ −(Xs + flows), ∀s ∈ S

Os ≥ Xs + flows − Cs, ∀s ∈ S

Os, Us ≥ 0, ∀s ∈ S

Xs ∈ Z0+ , ∀s ∈ S

Note that the auxiliary variables Os and Us are lower bounded by 0 because we only want to penalize
instances where there is a bike shortage (when −(Xs + flows) > 0, via the third constraint) or a dock
shortage (when − [Cs − (Xs + flows)] = Xs + flows − Cs > 0, via the fourth constraint).

2.1.2 Integer Program Extension Based on Net Flow Calculated at n-Minute Sub-intervals

Because Model A determines the optimal number of bikes to place at each station s based on the total net
flow of bikes calculated over the entire rush hour interval, it does not dynamically capture the time variant
aspect of the problem. At each point in time during rush hours, the number of bikes at a given station
and the net flow of bikes likely change, especially at busy stations. Thus, I chose to extend Model A to
minimize the total number of instances in each n-minute subinterval (such that n is significantly smaller
than the total length of the rush hour) where the demand for bikes/slots is greater than the number of
bikes/slots available. The total number of timesteps M that the extended integer program minimizes over
is M = R/n, where R is the total number of minutes in the rush hour interval. For example, if we define
the morning rush hour to be between 7-10am and choose a subinterval of length n = 10 minutes, we would
have R = 180 minutes and M = R/n = 18 time intervals.

The variable definitions for Xs, B, and Cs hold from the previous subsection for the below model. Ad-
ditionally, let Y s

t be the number of bikes at station s at timestep t, and let auxiliary variables U s
t and

Os
t capture the unmet demand in bikes and slots, respectively, at station s at timestep t. Let the set

T = {1, ...,M} be the total number of time intervals in the rush hour, where M = R/n as defined earlier.
The extended integer program, which I will refer to as Model B, is formulated as follows:

minimize
∑
s∈S

∑
t∈T

Os
t + U s

t

s.t.
∑
s∈S

Xs ≤ B

Xs ≤ Cs, ∀s ∈ S

U s
t ≥ −(Y s

t + flows
t ), ∀s ∈ S, ∀t ∈ T

Os
t ≥ Y s

t + flows
t − Cs, ∀s ∈ S, ∀t ∈ T

Y s
t = Xs +

t−1∑
i=0

flows
i , ∀s ∈ S, ∀t ∈ T

Os
t , U

s
t ≥ 0, ∀s ∈ S, ∀t ∈ T

Xs ∈ Z0+ , ∀s ∈ S
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2.2 Boston Bluebikes Data Collection & Cleaning 4

Note that the fifth equality constraint, Y s
t = Xs +

∑t−1
i=0 flow

s
i calculates the total number of bikes at

station s at timestep t by summing up the net flow at all previous timesteps and adding that sum to the
initial allocation of bikes, Xs.

2.2 Boston Bluebikes Data Collection & Cleaning

In order to apply the models formulated in subsection 2.1 to empirical data, I obtained bikeshare data from
the Bluebikes website which the company publishes in a CSV format on a monthly basis.6 For each month,
all trips taken throughout the month are recorded, along with the start stations, destination stations, start
times, end times, and other user demographic features. I chose to download bikeshare data from 2019
because the pandemic in 2020 has drastically impacted system dynamics in terms of rush hour traffic flow.
The distribution of the number of Bluebikes trips taken over the course of a day after March 2020 follows a
smoother normal distribution rather than a bi-modal distribution corresponding to peaks in system usage
during morning and evening rush hours.7

For the empirical case study portion of this project, I chose to use Bluebikes data from July 2019, August
2019, September 2019, and October 2019 to estimate the net flow parameters of the integer programs
proposed in the previous section. After concatenating the four datasets, I converted the date and time of
each recorded trip into Python datetime objects and removed all rides taken on a weekend day using the
datetime module’s associated DayOfWeek property.

I defined the hours corresponding to morning and evening rush hours by examining Bluebikes system usage
data from 2019, locating the two time intervals where average usage peaked during the day; I defined the
morning rush hour period to be between 7-10am and the evening rush hour period to be between 4-7pm.8

For Model B, I chose to use a 10-minute subinterval for the Boston case study. Ten minutes is a long enough
period to obtain estimates for net flow that are robust to large fluctuations, but small enough such that
when I divide a pre-defined 180-minute rush hour period into 10 minutes intervals, I obtain 18 timesteps
to optimize over. For each station s in the Bluebikes system, I calculated the average net flow of bikes
during each 10-minute subinterval for both the morning and evening rush hours. I did so by subtracting
the total number of trips starting at station s from the total number of trips ending at station s during
each 10-minute subinterval, before dividing this difference by the total number of unique trip dates in the
dataset. Then, to get the average net flow of bikes across an entire given rush hour period for Model A, I
summed each of the 10-minute subintervals corresponding to a given rush hour period.

3 Results & Analysis

3.1 Optimal Bluebikes Allocation Based on Total Net Flow

Each month, Bluebikes updates a document listing the number of docks for each station, which allowed
me to then accurately set the model parameters Cs (the capacity of each station s).9 I set B, the total
number of bikes in the system, to 2500 bikes as this statistic is also published by Bluebikes at the end of
each calendar year. The calculation of the total net flow parameter for each station during the morning
and evening rush hours is detailed above in section 2.2.

I implemented and solved all integer programs in the Python extension module of Gurobi, a commercial

6https://s3.amazonaws.com/hubway-data/index.html
7https://www.visualization.bike/bluebikes/overview/2020/7/
8https://www.visualization.bike/bluebikes/overview/2019/
9https://www.bluebikes.com/system-data
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3.1 Optimal Bluebikes Allocation Based on Total Net Flow 5

optimization solver for linear and mixed integer programming.10 Upon solving Model A with the respective
parameters for both the morning and evening rush hour periods, I obtained the following results displayed
in Figure 1. Each circle marker corresponds to a Bluebikes station and its associated color denotes the
optimal bike fill percentage for the station at the beginning of the morning (subfigure (a)) and evening
(subfigure (b)) rush hour period.

Figure 1: Optimal Bike Allocation at Each Bluebikes Station based on Total Net Flow for Morning vs.
Evening Rush Hours

(a) Morning Rush Hour

(b) Evening Rush Hour

Interestingly, the total number of bikes required to achieve the optimal bike allocation for both the morning
and evening rush hours is less than B = 2500, the total number of bikes in the Bluebikes system. For

10https://www.gurobi.com/documentation/9.1/quickstart mac/cs python.html
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3.2 Optimal Bluebikes Allocation Based on Net Flow Calculated at 10-Minute Intervals 6

the morning rush hour, a total of 1074 bikes are required in the optimal solution, where the average total
unmet demand for bikes is 55.315 bikes and and the average total unmet demand for slots is 194.888 slots
(resulting in an objective value of 250.202). For the evening rush hour, a total of 2031 bikes are required
in the optimal solution, where the average total unmet demand for bikes is 214.943 bikes and the average
total unmet demand for slots is 72.180 slots (resulting in an objective value of 287.124).

Examining the results in Figure 1, we see that the morning rush hour optimal bike allocation matches
the geographic distribution of residential versus business districts in the greater Boston area. Bluebikes
stations located along the Charles River and coastline have very low optimal fill percentages as many
businesses are located in this region; this matches our intuition because commuters are often looking to
drop off bikes at these stations before work in the morning. On the other hand, Bluebikes stations in the
surrounding neighborhoods require a higher fill percentage as commuters are looking to pick up bikes from
these regions in the morning in order to get to their offices located in the business districts. From Figure
1, we are also able to identify stations that lose bikes (the markers colored red/maroon), gain bikes (the
markers colored green/black), and self-balance bikes (the markers colored yellow/orange).

However, for the evening rush hour period, the optimal solution assigns to each station either zero bikes (if
the associated net flow of bikes at that station, flows, is positive) or its full capacity worth of bikes (if flows

is negative). Further examining the numerical morning rush hour solution reveals a similar behavior with
respect to stations with positive total net flow but not to stations with negative net flow. By construction
of Model A, assigning Xs the value of zero when flows is positive makes sense, as the auxiliary variable
Us in the third constraint will always be negative and thus never increase the objective value. Similarly,
the auxiliary variable Os in the fourth constraint is minimized with Xs = 0. As for the case of assigning
Xs to equal the capacity of station s when flows is negative, this optimal solution also makes sense by
the construction of Model A as doing so would minimize both the values of auxiliary variables Us and
Os. However, the total number of bikes assigned across all variables Xs is limited by B (the number of
Bluebikes available in the system). Thus the solution of assigning all stations s where flows is positive
its full capacity worth of bikes may not always be feasible, as evidenced by the different optimal solution
obtained for the morning rush hour period using Model A.

3.2 Optimal Bluebikes Allocation Based on Net Flow Calculated at 10-
Minute Intervals

To solve the integer program extension (Model B) detailed in 2.1.2, I used the same parameter values for
B (the total number of bikes in the system) and Cs (the capacity of each station s) from subsection 3.1
as published by Bluebikes. For the morning rush hour, the optimal solution returned by the Gurobi solver
for the integer program extension had very few differences when compared to that returned by Model A.
For each station s, I subtracted the optimal bike allocation for the station returned by Model A from the
optimal bike allocation for the station returned by Model B. The optimal bike allocation for 261 stations
remained the same, and there were differences of 1 bike for 44 stations, 2 bikes for 5 stations, 3 bikes for
1 station, and 4 bikes for 1 station. Each of these stations with an associated nonzero difference were
assigned an allocation of 0 bikes in the optimal solution from Model A. By minimizing the unmet demand
for bikes and slots at each 10-minute subinterval, Model B is able to better account for small fluctuations
in flow during the rush hour interval than Model A. The frequency of differences between the optimal
solutions of the two integer programs is plotted on the right hand side of Figure 2. On the left hand side,
we can visually see small differences between Model A’s (Figure 1a) and Model B’s optimal morning rush
hour solution for a few Bluebikes stations along the Charles River/coastline.

For the evening rush hour, the optimal solution for Model B differed drastically from that of Model A.

AM115



3.2 Optimal Bluebikes Allocation Based on Net Flow Calculated at 10-Minute Intervals 7

Instead of assigning Xs the value of zero if flows > 0 and assigning Xs the value of Cs if flows < 0, we
see a much more nuanced optimal bike allocation with Model B as shown in subfigure (b) of Figure 2.
Thus, when doing the same comparison between the optimal bike allocation for each station returned by
Model A vs. that returned by Model B, we see large negative differences for stations s initially assigned
its full capacity worth of bikes and small positive differences for stations s initially assigned 0 bikes.
Comparing the morning and evening rush hour optimal solutions of Model B, we see that the geographic
distribution of stations that lose and gain bikes are complementary to that of the morning rush hour
solution. Bluebikes stations located in business districts (along the Charlies River and coastline) have high
optimal fill percentages for the evening rush hour as commuters often take bikes from these locations at
the end of the work day. On the other hand, Bluebikes stations in nearby residential districts have low
optimal fill percentages as commuters often drop off bikes at these locations during the evening.

Figure 2: Optimal Bike Allocation at Each Bluebikes Station for Model B during Morning vs. Evening
Rush Hours (Left) & The Frequency of Differences in Morning vs. Evening Bike Assignments between
Model A and Model B (Right)

(a) Morning Rush Hour

(b) Evening Rush Hour
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Interestingly for Model B, the total number of bikes required to achieve the optimal bike allocation for
both the morning and evening rush hours is also less than B = 2500 (the overall number of Bluebikes
in the system). For the morning rush hour, a total of 1135 bikes are required in the optimal solution,
where the average total unmet demand for bikes across all timesteps is 464.719 bikes and the average total
unmet demand for slots across all timesteps is 1116.629 slots. Thus, we have an optimal objective value of
1581.348. For the evening rush hour, a total of 794 bikes are required in the optimal solution, where the
average total unmet demand for bikes across all timesteps is 1576.146 bikes and the average total unmet
demand for slots across all timesteps is 731.090 slots. This gives us an optimal objective value of 2307.236.
With Model B, we observe a much larger unmet demand for bikes and slots when compared to Model A
as we are able to capture fluctuations and misalignments in supply and demand within each 10-minute
subinterval rather than across the entire rush hour period.

4 Discussion

4.1 Uniqueness of the Optimal Solution

From the results of Model A discussed in Section 3.1, we see that for the evening rush hour period, the
optimal solution consists of assigning a station either zero bikes if its associated net flow is positive or
assigning a station its full dock capacity worth of bikes if its associated net flow is negative. Though
this solution is optimal, it is likely not unique and points to a model limitation, as the returned optimal
solution may be less informative of system dynamics than an alternative optimal solution. In this Bluebikes
case study, at least one other optimal solution exists that returns the same objective value but uses fewer
bikes by not overassigning bikes to stations with positive net flow. With experimentation, I found that
an alternate optimal solution using only 794 bikes can be obtained by limiting the total number of bikes
in the Bluebikes system to B = 2000, as the solution presented in 3.1 would violate this constraint as it
uses a total of 2031 bikes. The plot of this alternate optimal solution on a map can be found in Figure 3
of the appendix, and it much more closely resembles the optimal evening rush hour solution returned by
Model B than the previous alternative optimal solution from 3.1. Additionally, a unique optimal solution
can be obtained by minimizing the total number of bikes used; this can be done by adding Xs and Xs

t to
the objective functions of Model A and Model B respectively, both weighted by some small penalty term
such that minimizing unmet demand for bikes and slots still takes precedent.

4.2 Sensitivity to Net Flow Parameters

I examined the sensitivity of the results returned by Model B for the Bluebikes case study to the net flow
parameters associated with each station s. Bikeshare ridership is heavily impacted by seasonal weather
changes: during warmer months more rides are taken while during colder months, system usage decreases.
To calculate the net flow parameters associated with warmer months, I used Bluebikes ridership data from
May 2019, June 2019, July 2019, and August 2019. To calculate the net flow parameters associated with
colder months, I used Bluebikes ridership data from November 2019, December 2019, January 2020, and
February 2020.

For the warmer months, a total of 1016 bikes are needed for the optimal morning rush hour allocation,
resulting in an objective value of 955.966 units of unmet demand. A total of 747 bikes are needed for the
optimal evening rush hour allocation, resulting in an objective value of 1820.614 units of unmet demand.
On the other hand for the colder months, a total of 758 bikes are needed for the optimal morning rush
hour allocation, resulting in an objective value of 435.128 units of unmet demand. A total of 595 bikes
are needed for the optimal evening rush hour allocation, resulting in an objective value of 509.140 units
of unmet demand. We observe that fewer bikes are required during the colder months than the warmer
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4.3 Sensitivity to Station Dock Capacity 9

months to achieve the optimal allocation for both morning and evening rush hours, and that the total
unmet demand is also lower for colder months. Upon plotting the results obtained from the two different
sets of parameters on a map, which can be found in Figures 4 and 5 of the Appendix, we can see visually
that the general geographic variation of optimal rush-hour bike allocation remains similar for both the
colder and warmer months, though the optimal fill percentages are lower during colder months.

Additionally in Section 3, I made the assumption when calculating net flow parameters for both Models A
and B that the data Bluebikes publishes accurately represents the true demand for bikes and slots. This
assumption may not always hold due to censoring: the available data cannot capture instances where a
customer may have wanted to borrow a bike but found that no bikes were available at the origin station, as
well as instances where a customer may have wanted to end their trip at a specific destination station but
found that it was already at full capacity. Thus, the observed data may only represent a lower bound for
the true demand of bikes and slots. However, even though the numerical results for Bluebikes rush hour
allocation in Section 3 may be affected by censoring, the models proposed in this project can be adapted
easily to different datasets and return results that can guide operators to meet user demand.

4.3 Sensitivity to Station Dock Capacity

The only binding parameter in both Models A and B that bikeshare operators have control over is Cs, the
dock capacity of station s. I explored the effect of increasing the capacity of stations whose optimal bike
assignment by Model B equalled its total capacity (or more formally, stations s where Xs = Cs). I chose to
focus on Model B for this parameter sensitivity analysis because the impact on the optimal objective value
of increasing binding parameters Cs by 1 unit is less straightforward for Model B than for Model A. In
the optimal solution returned by Model B for the morning rush hour, three stations are assigned fill levels
that equal their dock capacity, stations 3 (359 Broadway – Broadway at Fayette Street), 94 (Community
Path at Cedar Street), and 208 (Nashua Street at Red Auerbach Way). For the evening rush hour period,
seven stations are assigned optimal fill levels that equal their dock capacity, stations 17 (Ames St at Main
St), 141 (HMS/HSPH – Avenue Louis Pasteur at Longwood Ave), 171 (Kendall Street), 172 (Kendall T),
181 (Longwood Ave at Binney St), 184 (MIT Stata Center at Vassar St / Main St), and 242 (Seaport
Square – Seaport Blvd at Northern Ave). The resulting optimal objective values (units of unmet demand
for bikes/slots) upon increasing each of the binding station capacity parameters by 1 (while holding all
other parameters constant) for the morning and evening rush hour models, respectively, are listed in the
table below:

Table 1: Effect of Increasing Binding Dock Capacity Parameters of Listed Stations by 1 on Optimal
Objective Value (Model B)

Morning Rush Hour

Station(s) Resulting Obj. Value

None (original) 1581.348
3 1581.348 (no change)
94 1573.573
208 1569.348

Evening Rush Hour

Station(s) Resulting Obj. Value

None (original) 2307.236
17 2294.236
141 2307.236 (no change)
171 2299.236
172 2301.393
181 2296.236
184 2298.270
242 2294.404
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Since building an extra dock is a relatively constant cost across all stations, the results of this sensitivity
analysis can help operators prioritize the order of stations to expand. From the results for the “Morning
Rush Hour” model, a new dock should be built at station 208 (Nashua Street at Red Auerbach Way) first
as doing so decreases the total average unmet demand for bikes (and thus the resulting objective value) by
the greatest amount. Similarly, from the results for the “Evening Rush Hour” model, a new dock should
be built at station 17 (Ames St at Main St) first since this unit increase would also result in the largest
decrease in the optimal objective value. A similar sensitivity analysis can also be completed for all stations
assigned an optimal bike fill of zero by Model B during the morning or evening rush hours, as such stations
may experience an excess demand for empty slots; increasing the capacity of these stations can potentially
further minimize the optimal objective value by decreasing unmet demand for vacant docks.

5 Conclusion

Bikeshare system imbalance is a significant cause of customer dissatisfaction, especially during rush hours.
Through two integer programming models that minimize the sum of instances where a customer seeks
to rent a bike but finds their desired origin station empty as well as cases where a customers wants
to drop off a bike at a full-capacity station, I was able to find an optimal morning and evening rush
hour bike allocation across all Bluebikes stations in Boston using historical trip data. The results of both
models inform operators of rebalancing strategies that best match customer demand and help them identify
which stations lose, gain, and self-balance bikes during a specific rush hour period based on each station’s
optimal fill percentages. Operators can also prioritize which stations to expand in terms of dock capacity
by reoptimizing the proposed integer programs using different parameter combinations.

To expand my current models, several paths for future work can be taken. As mentioned previously, one of
the primary limitations of the model is the challenge of estimating the net flow parameter from bikeshare
ridership data; because only successful trips are recorded, it would be of interest to estimate the true
underlying demand for bikes and slots so the optimal solutions returned by the proposed models better
reflect reality. Additionally, since the proposed integer programs are deterministic, it does not capture the
randomness in a bikesharing system; future work could explore using Markov chains or other stochastic
models to simulate bike movement throughout the system and optimize operations. Finally, although the
results of the integer programs in this project inform operators of the optimal number of bikes to place at
each bikeshare station before the start of morning and evening rush hours, it does not take into account
the operational costs of achieving this assignment that minimizes unmet user demand for bikes and empty
docks. In the future, it would be useful to formulate linear and mixed-integer programs to find routes that
minimize the cost of transporting bikes, subject to constraints such as van availability and capacity.
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6 APPENDIX

Figure 3: Alternative evening rush hour optimal solution to Model A
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Figure 4: Seasonal effect on optimal Bluebikes allocation (Model B) across all stations during morning
rush hours

(a) Morning Rush Hour (Warmer Months)

(b) Morning Rush Hour (Colder Months)
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Figure 5: Seasonal effect on optimal Bluebikes allocation (Model B) across all stations during evening rush
hours

(a) Evening Rush Hour (Warmer Months)

(b) Evening Rush Hour (Colder Months)
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